
Critic Authoring Templates for Specifying Domain-Specific Visual Language
Tool Critics

Norhayati Mohd.Ali1, John Hosking1, Jun Huh1 and John Grundy1, 2
1Department of Computer Science and 2Department of Electrical and Computer Engineering

University of Auckland,
Private Bag 92019, Auckland, New Zealand

nmoh044@aucklanduni.ac.nz, {john, jhuh003, john-g}@cs.auckland.ac.nz

Abstract

In recent years we have observed the extensive
evolution of support tools that work with the user to
achieve a range of computer-mediated tasks. One of
these support tools is the critiquing system (also known
as critics). Critics have evolved in the last years as
specific tool features to support users in computer-
mediated tasks by providing guidelines or suggestions
for improvement to designs, code and other digital
artifacts. While critic tools have been demonstrated to
be effective in providing feedback, critic authoring
continues to be a big challenge. We describe a visual
design critic authoring template approach that
facilitates the construction of critics for Marama-based
domain-specific visual language tools. Our template
approach provides end-users and tool designers with a
new way to express design critics in a natural and
efficient manner. We describe prototype tool support
for specifying and realizing these design critics in
Marama-based tools.

1. Introduction

The term “critic” was initially used by Miller [13]
to describe a software program that critiques human-
generated solutions. These types of program also
known as critic tools, have evolved in recent years to
support users in computer-mediated tasks by providing
guidelines or suggestions for improvement [3, 4, 17,
20]. Examples of critic tools are ArgoUML [3], Design
Evaluator [14] and Java Critiquer [16]. These tools
were developed for the domains of UML (Unified
Modeling Language), design sketching, and Java
programming respectively. For instance, ArgoUML
recognizes the elements and relations of UML and can
advise the designer when a software architecture
diagram violates the UML rules [3]. The Design

Evaluator supports designers with critical effective
feedback and gives reasoning on the design sketches
[14]. Likewise, the Java Critiquer detects statements in
a student program code that can be enhanced for
readability and best practice [16]. Several studies have
reported the benefits of applying such critic tools [3, 4,
13, 14, 16, 17, 20]. Among observable benefits, such
tools offer proactive design feedback to users to help
improve artifacts, proactively detect inconsistency and
incompleteness in the design, and help users avoid
careless mistakes.

Critic tools have been demonstrated effectiveness in
providing these sorts of feedback. However, there has
been little discussion of critic authoring i.e. the design
and development of these critic features for tools.
Critic authoring continues to be a large challenge [9,
15, 16]. Several researchers have explored different
approaches to critic authoring. For instance, Qiu and
Riesbeck [16] investigated how users can construct
critiquing rules. Their Java Critiquer tool integrates
authoring with critiquing system, to allow a teacher to
check or modify the critiques generated by the Java
Critiquer. Robbins and Redmiles discuss an
architecture for integrating critics into design tools but
require hard-coded approaches to implement their
critics [18, 19].

The aim of our paper is to describe a new approach
using visual critic authoring templates to support tool
and end user designers in specifying design critics for
Marama-based domain-specific visual language tools.
Our research is intended to extend the capability of
Marama meta-tools to enable such design critics to be
much more easily specified and realized by tool
developers by incorporating such a visual critic
authoring support feature. We first introduce the
background and motivation for this research. We then
present our approach to critic construction in Marama-
based tools. Next, we describe our critic authoring
template approach for specifying critics. An example

2009 Australian Software Engineering Conference

1530-0803/09 $25.00 © 2009 IEEE

DOI 10.1109/ASWEC.2009.22

81

illustrating the use of critic authoring templates is also
shown. The design and implementation of visual critic
authoring templates are described. We discuss the
potential benefits and limitations of the critic authoring
templates then summarise the research work and
describe our next steps.

2. Background and Motivation

Consider a software designer developing a UML
design for a software system. As they develop this
design a number of “issues” may arise:
• They may construct invalid UML designs e.g.

classes with the same name, classes with same-
named fields, classes with invalid relationships to
other classes e.g. inherit from its own sub-class;

• They may construct incomplete UML designs e.g.
class with no relationship to other classes, or class
method with argument missing type;

• They may construct designs which are sub-optimal
e.g. fail to use appropriate design pattern or
wrongly use a pattern, construct an over-complex
class, repeat relationships between classes, or fail
to hide certain class members.

A design critic feature in the UML design tool the
designer is using would provide feedback to the
designer on these sorts of issues. Some of these
“critics” would immediately let the designer know of
critical problems e.g. same-named class members or
other invalid constructs. For example, in Figure 1 a
critic has detected an invalid UML design construct –
renaming a class to a name already in use - and is
proactively informing the designer [1]. Other critics
may inform the user in less obtrusive ways e.g. a list of
“suggestions” in a separate viewing pane.

Figure 1. Simple critic (same named class)

violation.

We have been developing the Marama [7] set of
meta-tools for design and implementation of domain-

specific visual language tools and wish to easily add
such design critic definitions to Marama tool
specifications. To date we have implemented such
critics using low-level Java event handler code and
OCL constraints. Such approaches are very difficult for
tool developers, particularly novices, to understand and
use. They are also difficult to maintain, extend and
reuse. Ideally we want a visual specification tool for
authoring and generating Marama design critic
implementations. This would then fit well with the
other visual meta-tools we have developed for the
Marama platform.

Critic tools have been developed in domains such as
software engineering design tools, medical information
systems, computer-based education systems, and
programming support tools. These existing critic tools
use a variety of approaches such as rule-based,
knowledge-based, pattern matching and object
constraint language (OCL) expressions in their design
and realization of critics. Rule-based approach consists
of a condition and an action. If the condition is true,
then the action is performed [15]. Actions can include
suggestions, explanations, argumentations, messages
or precedents of problems. For instance, ABCDE-
Critic [20] uses rule-based expression to specify critics
that comment on UML class diagram-based designs.
The critic tool invokes critics when a condition clause
is found to be true in the current design parts alerting
user that the design may have problem [20]. Rules may
be coded in Java, JEOPS (Java Embedded Object
Production System), or Prolog according to the critic
type.

The IDEA (Interactive Design Assistant) tool [4]
produces design pattern critics implemented with
Prolog rules that are directly integrated with a
knowledge base. Bergenti and Poggi [4] stated that the
knowledge base of IDEA is comprised of a set of
design rules, corresponding critics, and a set of
consolidation rules. The rules for creating the pattern-
specific critics are not easy as they requires a high-
level of understanding of design patterns and detailed
knowledge of the Prolog and knowledge base
structures [4].

Pattern matching consists of left-hand side and
right-hand side rules. For instance, the Java Critiquer
that checks program code [16] used pattern matching
for its automatic critiquing. A JavaML pattern is used
for matching JavaML code generated from the Java
parser. When a pattern is matched, its corresponding
critique is added into the Java source code [16].

Another way to specify critic is to use object
constraint language (OCL) expressions. We illustrate a
simple example of critic authoring [1] using an OCL
expression extending a UML class diagramming tool
that was developed using the Marama meta-tools [7].

82

Critics for UML class design have been identified and
formulated into the OCL expressions used by
MaramaTatau [10], a Marama tool for specifying
model constraints, and associated with the UML tool
meta-model. These critics are then applied in the
executing tool (i.e. at the model or Marama diagram
level) as shown in Figure 1. The OCL expression used
to implement this particular constraint in the Marama
UML tool is shown below:

Class.allInstances()->forAll(c1,c2 | c1 <> c2

implies c1.name <> c2.name)

Some of the difficulties and barriers in specifying
critics using such OCL expressions based on our
experience with Marama include:
• OCL is not easy to understand and even harder to

write [21] for many tool users and developers;
• Users who lack of knowledge of OCL will have

problems in specifying critics using OCL
expressions;

• Difficulty in expressing [21] meaningful critics
through OCL expressions as it is hard to scale the
OCL expressions for complex critics

Apart from the approaches stated above, critics can

be realised through the use of programming code. For
instance, critics in ArgoUML [3] are coded as Java
classes. ArgoUML provides a class framework, source
code templates and examples to facilitate the critic
implementation process. Similarly we have
implemented a number of critics in Marama-based
tools using its Java code event handler mechanism.

The approaches summarised above require deep
understanding of the tool platform in order to design
and specify critics. In fact, the customization of critics
would not be easy because it requires overall
comprehension of the approach employed as well as
the critic domain.

Critic rules are one of the essential components in
building critic tools. According to Oh et al. [15], critic
rules are written by system designers in advance and
once written, the customization of the rules is not easy.
However, critiquing capacity and issues may need to
be altered now and then in various situations [9, 15,
16]. Oh et al. [15] reported that “Rule authoring
improves the accuracy, relevance and capacity of
critiquing. It enables users to store their own rules. It
is an important feature that enables systems to deal
with diverse situations. Rule authoring empowers
designers to participate in the system’s feedback
process”.

Little attention has been given to provide an
authoring facility for the user to add or modify critics.

Qiu and Riesbeck [16] have investigated critique rule
authoring. They explored the question of how users can
create critiquing rules. Their Java Critiquer tool
integrates authoring with a critiquing system, so that a
teacher can check or modify the critics in addition to
the feedback that Java Critiquer generates [16]. Some
of the tools that allow for customization of critic rules
are ArgoUML, IDEA, Design Evaluator, and ABCDE-
Critic. For instance, ArgoUML [3] provides a class
framework, source code templates and examples to
support critic implementers. Authoring a new critic
requires selecting a starting template, filling in
relevance and timeliness attributes, coding analysis
predicates and writing a headline and brief description
[3]. In IDEA [4], the engineer can provide new patterns
and new rules to select and fire new critics. Similarly,
the Design Evaluator [14] that allows the end user
(designer) to inspect and edit the rule expressions
which are stored in a list. ABCDE-Critic [20] also
allows the user themselves to add critics to the
critiquing system, through its first-order production
system.

Due to the problems and barriers noted above, we
see an opportunity for a visual design notation to
represent critics. The need to specify and design critics
in a simple way by using an easy to use, high-level
language is the motivation of this research. This would
also provide a new meta-tool facility for our Marama-
based tools that provides a similar visual approach to
its other meta-tools. We employ a domain specific
visual language (DSVL) approach in our research,
which has become important in many domains of
software engineering and end user development [22].
DSVLs are graphical notations specially devised for
specific needs and knowledge. The languages allow
anyone who is a domain expert to use the visual
language as an application development tool for the
domain [22]. Domain specific visual languages
(DSVL) are a common approach to reduce barriers to
usage, and we see an opportunity to develop a visual
critic authoring framework to support software tool and
end user.

3. Our Approach

To ameliorate the problems identified above with
current approaches to critic authoring, we have
developed a prototype of visual critic authoring tool to
allow tool and end user designer to construct and
specify critics for Marama-based tools. Figure 2
illustrates the process of constructing and using such
critics.

A tool or end user designer uses the Marama meta-
tools [7] to develop a Marama-based tool (1). A set of

83

core Eclipse [5] plug-ins provides diagram and model
management support for Marama modeling tools. Once
a Marama-based tool is defined, a tool or end user
designer can specify critics for that particular tool.
Critics are specified using the Marama metamodel
definer views (2). A tool user opens or creates a new
modeling project and diagrams using this plug-ins.
When a diagram is created, critics for that particular
tool will be applied. If a user creates a diagram that
violates the design rules of that tool, then a critique
will be generated to warn user about the errors in the
diagram (3).

Figure 2: Marama visual critic development

approach

In order to develop a critic support-based extension
for Marama-based tools we have added a new
functional item, CriticShape, to the Marama meta-
model editor (refer to Figure 3). This provides tool
designers with a way to add a number of critics to a
tool specification and have an appropriate underlying
infrastructure for the critic generated by Marama. We
created a critic authoring template to allow tool and
end user designers to construct appropriate critics for
the Marama-based tools using a form-based approach.
Critic shapes are connected to relevant tool
specification elements to show users the items they are
dependent on. Critic information is added to meta-
model specifications (data structure entities and
associations, such as classes, objects, methods and
features in a UML design tool); shape definitions
(visual representations of visual language elements like
class, object and note shape specifications in a UML
tool); and view type specifications (such as class
diagram and sequence diagram definitions for a UML
tool).

In the next section we describe the design of critic
authoring template in specifying critics for Marama-
based tools.

4. Critic Authoring Template

The idea of critic authoring templates was inspired
by the business rule template proposed in the BROOD
(Business Rules-driven Object Oriented Design)
approach proposed by Loucopoulos and Wan Kadir
[11, 23]. The details of this template can be found in
[11]. The business rule templates derive from the rules
definition expressed in a context-free grammar EBNF.
EBNF is a meta syntax notation used to express
context free-grammar: that is, a formal way to describe
computer programming languages and other formal
languages [6].

The business rule templates arise from a business
rule typology that consists of three main types:
constraint, action assertion, and derivation [11, 23].
Definitions and brief descriptions of these three types
are shown in Table 1.

Table 1: Definition of constraint, action
assertion and derivation (adopted from

BROOD approach [11])
Type Definition and description
Constraints “… specify the static characteristics of

business entities, their attributes, and
their relationships. They can be further
divided into attribute and relationship
constraints. The former specifies the
uniqueness, optionality (null), and value
check of an entity attribute. The latter
asserts the relationship types, as well as
the cardinality and roles of each entity
participating in a particular
relationship”. [11]

Action
assertion

“…concerns a behavioral aspect of the
business. Action assertion specifies the
action that should be activated on the
occurrence of a certain event and
possibly on the satisfaction of certain
conditions”. [11]

Derivation “…derives a new fact based on existing
facts. It can be of one of two types i.e.
computation, which uses a
mathematical calculation or algorithm,
to derive a new arithmetic value, or
inference, which uses logical deduction
or induction to derive a new fact”. [11]

 The rule templates are formal sentence patterns that

allow the expression of business rules [11]. These
templates are currently used in the business process
domain for modelling. However, due to the following
reasons, we have attempted to utilize these templates in
the software tool domain, specifically for our prototype
visual critic authoring tool [11, 23]:

84

• The templates use a language definition based on
the context-free grammar EBNF that defines
sentence patterns for rule statements;

• The templates use natural language that is easily
understood to represent the rules;

• The templates provide guidance for users to
determine the rules;

• The templates provide a way to construct the rule
statements;

• The templates facilitate the linking of rule
statements to software design elements.

• Although developed for the business domain, the
templates are more general in nature and are easily
adapted for use in the critic domain

Thus, we decided to adopt the templates to specify

and express the critic rules. In spite of that, the critic
authoring templates for the visual critic authoring tool
initially covers attribute and relationship constraints
only. The action and derivation part will be our next
task to address. The critic rules templates that
correspond to the attribute and relationship constraints
are shown in Table 2.

Table 2: Attribute and relationship constraint
(adopted from business rule template [11])

Attribute
Constraint

<entity> must have | may have a
[unique] <attributeTerm>.

<attributeTerm1> must be | may be
<relationalOperator> <value> |
<attributeTerm2>.

Relationship
Constraint

[<cardinality>] <entity1> is a/an <role>
of [<cardinality>] <entity2>.

[<cardinality>] <entity1> is associated
with [<cardinality>] <entity2>.

<entity1> must have | may have
[<cardinality>] <entity2>.

<entity1> is a/an <entity2>.

These critic authoring templates will support the

tool and end-user designer to specify critics for
Marama-based tools. Our initial attempt to utilize these
templates was by specifying critics via attribute and
relationship constraints. The Marama meta-tool uses
Marama Metamodel Definer views to specify a tool
meta-model. New CriticShapes are created and added
to a Marama Metamodel Definer view as shown in
Figure 3 (highlighted by dotted rectangles).

In Marama, a domain-specific visual language tool
meta-model is expressed using an Extended Entity
Relationship (EER) diagram [12] which specifies
entities and relationships, together with their attributes.

Figure 3: CriticShape functions added to the
marama metamodel definer view (highlighted

by dotted rectangles)

When the meta-model is equipped with sufficient
information, critics can be defined via critic authoring
templates. The association of critic phrase types with
the corresponding tool meta-model element is shown
in Table 3.
Table 3: Association of critic phrase type with

the tool meta-model
Critic phrase type Tool meta-model elements
<entity> Entity
<attributeTerm> Attribute
<cardinality> end1Multiplicity,

end2Multiplicity
<role > associationEndName
<relational
operator>

Enumeration

<value > Literal value

A critic construction view interface is designed to

allow tool and end-user designers to specify critics for
their Marama-based tools. The interface is composed
of attribute and relationship constraint properties for
defining a critic. The details of critic authoring
capabilities are described in the following section.

85

Figure 4: MaramaMTE metamodel definer view

5. Example Usage

We illustrate the use of critic authoring capabilities
from one of our Marama-based tool, the MaramaMTE
software architecture design tool [8]. The meta-model
of MaramaMTE is shown in Figure 4. Initially a tool
designer or end user designer specifies a design tool
using a set of visual Marama meta-tools [7]. In this
example, a tool developer has specified a variety of
entities and associations to represent the structure of a
software architecture e.g. clients, servers, databases,
remote objects, services, requests and various
relationships. The green circle annotations indicate
various model constraints specified using
MaramaTatau [10].

Once the meta-model, shape designs and view
designs of MaramaMTE are created, the tool/end user
designer is able to construct appropriate and
meaningful critics for the MaramaMTE tool. Tool and
end user designers who understand the domain
knowledge of MaramaMTE will be able to specify
critics for this tool. The CriticShape tool from the
Marama meta-model editor is selected to define a
critic. A critic construction view is then displayed to
guide the critic authoring task, as shown in Figure 5.
This form allows the tool developer to specify a range
of critic properties based on the Business Rule concept
above. These include:

• Entities and relationships in the meta-model
the critic is interested in;

• Attribute(s) of entities or relationships the
critic is interested in;

• Patterns to match in the design e.g. entity
existence; association existence or cardinality;
attribute value(s) (regular expression)

• What critic template to apply in this situation.
This is a pre-defined list including uniqueness
constraints, existence constraints, pattern
match/non-match.

Figure 5: Critic authoring templates

In Figure 5, a critic for the RemoteObject entity is

being specified using an attribute uniqueness pattern to
ensure RemoteObjects have a unique name.

There are two fundamental types of constraints for
specifying a critic; attribute constraint and relationship

86

constraint. The attribute constraint consists of two
templates:
1) <entity> must have | may have a [unique]

<attributeTerm> and
2) <attributeTerm1> must be | may be

<relationalOperator> <value> |
<attributeTerm2>.

The relationship constraint comprises the following
templates:

1) [<cardinality>] <entity1> is a/an <role> of
[<cardinality>] <entity2>.

2) [<cardinality>] <entity1> is associated with
[<cardinality>] <entity2>.

3) <entity1> must have | may have [<cardinality>]
<entity2>.

4) <entity1> is a/an <entity2>.

Critics for our MaramaMTE tool, such as the one in

Figure 5, are specified using these templates. For
MaramaMTE critics might include completeness of the
architecture design e.g. all elements linked by
appropriate relationships; correctness of the
architecture design e.g. no same-named services for the
same remote object or same-named tables for the
database; and “quality” of the architecture design i.e.
checking for particular architecture styles e.g. if all
services are in a single remote object; if redundancy is
encountered; and so on.

After definition in our Marama meta-tool the
defined critics are stored in a custom XML format in a
repository along with the other tool specification
elements, such as the metamodel entities and shape and
view specifications.

The stored critics are then applied when the tool is
instantiated and executed (i.e at the model or Marama
diagram level) as shown in Figure 6 and Figure 7.
When Marama loads the definition of a tool it also
loads the critic definitions. It then instantiates “event
listeners” on the tool meta-model elements so that
when these are changed, the critic “engine” is informed
of the state change. The critic engine then determines
which critic(s) are interested in the change and whether
the critic action criteria have been met by the current
state of the design. If so, the critic action is invoked
e.g. message to user, message in list, highlight
erroneous item(s) in a view, undo change made etc. In
Figure 6 a critic detects the lack of a unique name
attribute specified for a remote object, a violation of a
correctness constraint. This is an example of an
attribute constraint template critic. In Figure 7 a critic
detects a remote object lacks service definitions. This
is incompleteness in the design for the remote service.
This is an example of a relationship constraint template
critic.

Whenever a tool user creates or modifies one or
more diagram elements that results in a violation of
any design rules that were stored as critics, a critique
message will be displayed to warn the user about the
potential problem. These messages can also be
configured to be shown in the Eclipse Problem view
pane as less intrusive notifications to the designer.

Figure 6: Critic statement: remote object must

have a unique name. Attribute constraint
template: <entity> must have | may have

[unique] <attributeTerm>

Figure 7: Critic statement: remote object must

have many service. Relationship constraint
template: <entity1> must have | may have

[<cardinality>] <entity2>

We have also developed a visual representation of
design critic structures (using Marama) to allow
browsing of critic specifications using its own domain-
specific visual language. An example of this browser in
use for critics specified for the Marama UML design
tool [2] is shown in Figure 8. Each critic is represented
as a visual item (top left) with elements representing
(counter clockwise): the meta-model entity involved;

87

the instantiated template; a textual description; a
suggested repair if the critic is violated; and a compiled

OCL form of the constraint specified.

Figure 8: Examples of critics for a simple UML class diagram tool definition

6. Design and Implementation

We have implemented a critic support feature added
to the existing Marama meta-tools. The idea of this
critic support designer is to assist the tool and end user
designer to construct critics for Marama-based tools.
This work has added new design critic features to the
Marama meta-tools and implementing a “critic engine”
to load and run these critics during Marama tool use.

As shown in Figure 9, a new function, CriticShape
was added to the Marama meta-model editor to specify
a critic. Together with the CriticShape is the critic
authoring template interface. We have developed critic
authoring templates by adapting the business rule
templates and designing a form-based interface to
allow critic construction by tool/end user designers
(refer to Figure 5). In the existing Marama meta-tools,
the meta-model folder only contains association types
and entity types, as shown in Figure 10. However, with
the critics’ definition, we have added a critic type
folder as a repository to store the specified critics.
Once the critics are specified and defined, these are
added in the critictypes folder as shown in Figure 11.
Each critic is stored as an XML data file. Currently,
each critic is defined based on the attribute and
relationship constraint templates.

 A “critic engine” loads the XML save files and
instantiates an “event listener” in Marama for each of
the critics defined for a Marama tool. A “critic

processor” is assigned to each critic event. The event
listeners receive events whenever the model is changed
and determine if a particular critic is interested in the
event and what action to take.

Figure 9: Old meta-model editor (left-side) and

new meta-model editor (right-side) with
CriticShape icon.

Each critic template represents a type of critic and

we have implemented each critic as a concrete class. A
critic processor class is instantiated using the stored
XML information to determine which model element
events it is interested in; patterns to match in terms of
model state; and its action when receiving change

88

events and matching part of the model state. Our
architecture allows new critic templates to be added
which provide users with new critics to specify for
their tools.

Figure 10: Meta-model folder with entity and
association types

Figure 11: Critics are stored in the critic type
folder

7. Discussion

We have applied our new critic authoring approach
to several Marama design tools, including
MaramaEML (Enterprise Modelling Language), a
Marama UML tool, MaramaMTE software architecture
design tool, and MaramaVCPL, a health care plan
modeling tool. We developed for each several
correctness, completeness and advisory critics using
our critic templates. We assessed the performance of

these critics and our template approach by comparing
them to OCL and Java event handler-implemented
critics previously developed by hand for these tools.
Our template critic extensions to the Marama meta-
tools made it far easier and quicker to both develop
new critics but also to modify existing critics specified
for the tools.

Key benefits of our approach include the way it
provides a simple way to express critic rules/phrases
and resultant actions. A novice designer may easily
construct and specify critics using the critic authoring
templates. The critic authoring templates offers a
structured form in expressing the critic rule/phrase.
Marama instantiates critic rule processors when
opening a tool and uses Marama’s built-in event
handler mechanism to proactively check changing
designs.

The main limitations of this approach are that it
currently only supports fairly simple design critic
construction. Critics can be defined only based upon
the available templates and can only pattern match a
limited part of the model as supported in the template
definition. Very complex critics are not able to be
specified via attribute and relationship constraint
templates. This is a deliberate design choice: we are
aiming to support the majority of the types of critics
that end users would be interested in defining, leaving
the specification of more complex critics (typically
done by an experienced tool designer) to OCL
constraints or Java event handlers. Only limited actions
are supported at present – notifying the user of critic
feedback and undoing the previous editing operation.
The critic engine implemented in Marama uses a
simple approach to determine interested design critics
which could be made more efficient when large
numbers of critics exist in a tool.

We plan to extend our approach to use visual action
and derivation rules as a way to specify more complex
critics. Our next task is to expand the critic authoring
template by considering user-specified action and
derivation rules to construct such critics. More aspects
of critic feedback also need to be considered. The critic
authoring templates should also enable the tool and end
user designer to identify and construct appropriate
feedback to tool user. Some of the issues in providing
critic feedback are intervention strategies [9, 15, 17],
critic modalities [15], and types of feedback [9, 15,
17].

8. Summary

We have described an approach for specifying and

authoring critics for Marama-based tools. Critic
authoring templates adopting attribute and relationship

89

constraint rules from the business rule templates [11,
23] were developed and added to the Marama meta-
tools. We developed a prototype of this visual critic
authoring template approach to demonstrate the
potential of this approach to integrate into the Marama
meta-tools. We have used our prototype visual critic
authoring tool to demonstrate the potential of this
approach by integrating critic support into the software
tool development process. We illustrated the utility of
visual critic authoring tool with two exemplars using
critic authoring template: one for the MaramaMTE
software architecture tool; the other for UML class
diagram tool. We have also applied to tool to other
software design tools such as business process and
health care planning application design tools.

This work is very much a proof-of- concept that
critic authoring templates will support the tool and
end-user designer to construct and specify critics in a
simple way for Marama-based tools. Our plans for
future work on this research include the construction of
complex critics via action and derivation rules.
Furthermore, along with the critic authoring templates
is the need to create critic feedback facilities. The
refinement of the existing prototype will consider the
enhanced use of a domain-specific language for critic
specification. Evaluation of the prototype by target end
users will also be performed.

9. References

1. Ali, N.M. A Generic Visual Critic Authoring Tool,

Proceeding VLHCC’07, IEEE CS Press, 2007, pp.260-
261.

2. Ali, N.M. Specifying Visual Design Critic Framework,
Proceeding NZCSRSC’08, April 2008, Christchurch,
New Zealand, pp.184-187.

3. ArgoUML, http://argouml.tigris.org/
4. Bergenti, F. and Poggi. A. Improving UML Designs

Using Automatic Design Pattern Detection, In
Proceedings of the 12th International Conference on
Software Engineering and Knowledge Engineering
(SEKE), 2000, pp. 336-343.

5. Eclipse, http://www.eclipse.org/
6. ExtendedBNF, http://www.cl.cam.ac.uk/~mgk25/iso-

14977.pdf
7. Grundy, J.C., Hosking, J.G., Huh, J. and Li, N. Marama:

an Eclipse meta-toolset for generating multi-view
environments, Formal demonstration paper, 2008
IEEE/ACM International Conference on Software
Engineering, Liepzig, Germany, May 2008, ACM Press.
See also: https://wiki.auckland.ac.nz/display/csidst

8. Grundy, J.C., Hosking, J.G., Li, L. and Liu, N.
Performance engineering of service compositions, ICSE

2006 Workshop on Service-oriented Software
Engineering, Shanghai, May 2006.

9. Irandoust, H. 2006. Critiquing systems for decision
support. DRDC Valcartier TR 2003-321.
http://pubs.drdc.gc.ca/PDFS/unc44/p524782.pdf.

10. Liu, N., Hosking, J.G. and Grundy, J.C. MaramaTatau:
Extending a domain specific visual language meta-tool
with a declarative constraint mechanism, Proceeding
VLHCC’07, IEEE CS Press, 2007, pp. 95-103.

11. Loucopoulus, P., and Wan Kadir, W.M.N.
“BROOD:Business Rules-driven Object Oriented
Design”, Journal of Database Management, Vol.19,
Issue 1, 2008, pp. 41-73.

12. Markowitz, V. Extended Entity Relationship Diagram,
http://sdm.lbl.gov/OPM/DM_TOOLS/OPM/ER/ER.html

13. Miller, P. Expert Critiquing Systems: Practice-based
Medical Consultation by Computer. Springer Verlag,
New York, 1986.

14. Oh,Y., Do, E.Y.-L, and Gross, M.D., “Intellligent
Critiquing of Design Sketches”, in JL Randall Davis, T
Stahovich, R Miller and E Saund (eds), Making Pen-
based Interaction Intelligent and Natural, The AAAI
Press, Arlington, Virginia, 2004, pp 127-133.

15. Oh,Y., Gross, M.D and Do, E.Y.-L, Computer-Aided
Critiquing Systems, Lessons Learned and New Research
Directions. http://code.arc.cmu.edu/lab/upload/caadria-
oh.0.pdf

16. Qiu, L., and Riesbeck, C.K., “An Incremental Model for
Developing Educational Critiquing Systems: Experiences
with the Java Critiquer”, Journal of Interactive Learning
Research, 2008(19), pp.119-145.

17. Robbins, J.E. 1998. Design Critiquing Systems,
Technical Report UCI-98-41.
http://www.ics.uci.edu/~jrobbins/papers/CritiquingSurve
y.pdf.

18. Robbins, J.E., Hilbert, D.M. Redmiles, D.F. Software
Architecture Critics in Argo. Intelligent User Interfaces
1998, pp. 141-144

19. Robbins, J.E., Redmiles, D.F. Software architecture
critics in the Argo design environment. 1.
 Knowledge-Based Systems 11(1), 1998, pp. 47-60.

20. Souza, C.R.B., et al. A Group Critic System for Object-
Oriented Analysis and Design, In Proceedings of the 15th
IEEE Conference on Automated Software Engineering,
IEEE Press, 2000, pp. 313-316.

21. Sourrouille, J.L. and Caplat, G. Constraint Checking in
UML Modeling, In Proceedings of the 14th International
Conference on Software Engineering and Knowledge
Engineering (SEKE’02), 2002, pp. 217-224.

22. Sprinkle, J., and Karsai, G.” A Domain-Specific Visual
Language for Domain Model Evolution”, Journal of
Visual Languages and Computing, Vol.15, Issues 3-4,
June-August 2004, pp 291-307.

23. Wan Kadir, W.M.N., and Loucopoulus, P. “Relating
evolving business rules to software design”, Journal of
Systems Architecture, 50(7), Elsevier, 2004, pp.367-382.

90

